
less .bashrc - A Deep Dive into a Simple

Command

Oscar Topliss

June 2024

1

1 Table of Contents

Contents

1 Table of Contents 2

2 Introduction 4
2.1 Description . 4

2.1.1 Software versions . 4

3 Report 5
3.1 Initiation . 5

3.1.1 Context of the command 5
3.2 VFS . 5

3.2.1 What VFS is . 5
3.2.2 Common file model . 5

3.2.2.1 Superblocks . 5
3.2.2.2 Inodes . 5
3.2.2.3 Dentry objects 5
3.2.2.4 File objects . 6
3.2.2.5 Process data . 6

3.2.3 Finding, opening, and closing the file. 7
3.2.3.1 Pathname lookup 7

3.2.3.1.1 link path walk() and verifying file ac-
cess rights 7

3.2.3.2 open() function 7
3.2.3.3 read() . 7
3.2.3.4 close() . 7

3.2.4 Usage of VFS by the less utility 7
3.2.4.1 Finding the file in VFS 7
3.2.4.2 Creating the file object 8
3.2.4.3 Reading from the file object 8
3.2.4.4 Closing the file 8

3.3 Process and memory management 11
3.3.1 Virtual address spaces . 11

3.3.1.1 Process isolation 11
3.3.1.2 Virtual address space sections 11
3.3.1.3 Paging . 11

3.3.2 Running less in a child process 13
3.3.2.1 Waiting for less to finish executing 13
3.3.2.2 less termination 13

3.4 User interaction . 13
3.5 System calls . 15

3.5.1 usermode, kernel mode, and traps 16

4 Conclusion 17

2

5 List of References 18

3

Figure 1: Version number of less

Figure 2: Version number of Gnome Terminal

2 Introduction

2.1 Description

The aim of this report, as per the coursework brief, is to discuss what occurs
between an unprivileged user entering the command less .bashrc into their
terminal, and the resulting process exiting. This will involve analysis of how
the process interacts with the underlying operating system, including how files,
memory, and process data are managed.

2.1.1 Software versions

Throughout the report I will be using Debian 12 Stable, and version 590 of less
which comes with it (see figure 1). It is assumed that the user is entering the
command in a graphical terminal window, in this case Gnome Terminal version
3.46.8 (see figure 2), using bash version 5.2.15(1) (see figure 3)
Any conclusions may not apply to other operating systems or versions of less

Figure 3: Version number of bash

4

3 Report

3.1 Initiation

3.1.1 Context of the command

The PATH environment varible defines where to search for the executables which
correspond to commands(Debian 2023b). When the less command is entered,
the bash terminal searches using this environment variable to find the less

executable, and execute it. The bash terminal likely gains access to this envi-
ronment variable via the DisplayManager(Wiki 2023), which would be gdm3 in
the case of Debian 12 running Gnome(Debian 2023a).

3.2 VFS

3.2.1 What VFS is

VFS stands for Virtual Filesystem. It is a part of the linux kernel which
acts to present files and directories in a consistent way to processes and users,
regardless of what type of filesystem each file is actually stored in(Bovet &
Marco 2006, p. 456).

3.2.2 Common file model

The Common File Model is the abstract representation used by VFS for man-
aging files. It splits files and their uses into a number of object types, which
enable different processes to access the same files at the same time.

3.2.2.1 Superblocks Each superblock represents a particular file system,
and the collection of files/directories stored within it.(Senofsky et al. 2022)

3.2.2.2 Inodes Inodes (”Index nodes”(Senofsky et al. 2022)) represent the
files themselves (including directories as the Common File Model considers di-
rectories to be files(Bovet & Marco 2006, p. 459)). Inodes include data relating
to the file, including who can access the file and in what way (i mode variable),
and a pointer referencing which supberblock the file belongs to (i sb)(Bovet &
Marco 2006, p. 467).

3.2.2.3 Dentry objects Dentry objects are used to link human-understandable
path/resource names to the inodes which they represent(Bovet & Marco 2006,
p. 460). There can be multiple dentry objects referring to the same inode in
cases where multiple hard links exist.(Bovet & Marco 2006, p. 460). (hard
links being direct references to an inode, as opposed to soft links which refer to
the inode’s location at the time of the soft links creation(GeeksForGeeks 2022)).
Dentry objects refer to individual files including directories, and as such a path
made up of multiple directories such as /home/user/Desktop will consist of
chained-together dentry objects for /, home etc.(Bovet & Marco 2006, p. 475)

5

Figure 4: Two terminal windows, with the left showing the output of the less
.bashrc command and the right showing the list of files in that processes
proc/PID/fd directory.

To achieve this, dentry objects have pointers to both their parent dentry object
(d parent variable), and a list of sub-directory dentry objects (d subdirs)(Bovet
& Marco 2006, p. 475).

3.2.2.4 File objects File objects represent interactions between an inode
and a process. They include useful variables such as f pos (aka the file pointer),
which specify where the process is in the file.(Bovet & Marco 2006, p. 471)

3.2.2.5 Process data Processes are associated with fs struct data struc-
tures, which contain information such as the working directory of the process
(pwd).(Bovet & Marco 2006, p. 478)
Processes are also associated with a data structure called files struct, which
contains information relating to the files being manipulated and used by it.(Bovet
& Marco 2006, p. 479)
files struct contains a pointer to an array known as the fd array, which
points to the files in use by the process. As standard, a user-facing process
will begin with stdin, stdout, and stderr loaded as files 0, 1 and 2 in this
array.(College n.d.)(Bovet & Marco 2006, p. 479)
Looking at the proc/PID/fd directory representing the files accessed by the
less .bashrc process(Khurana 2022) shows 5 entries. I’m unsure as to what
file 3 represents, but file 4 shows .bashrc, as shown by figure 4

6

3.2.3 Finding, opening, and closing the file.

3.2.3.1 Pathname lookup In order to open the .bashrc file, a pointer to
that file must be resolved. If the pathname doesn’t begin with a /, as is the case
in the report’s example, then it is not an absolute path and searching will begin
from the working directory associated with the calling process(Bovet & Marco
2006, p. 497) found in the fs struct instance associated with the process as
discussed in section 3.2.2.5.

3.2.3.1.1 link path walk() and verifying file access rights A pointer
to the file is then found by running a method called link pathname walk().
This method recursively searches for the file in question by splitting the path
of the desired file into its component parts. For each of these component parts,
the restrictions on accessing that directory/file are compared against the per-
missions of the process which which is attempting to find the file. If the process
has insufficient permissions, an error is returned.(Bovet & Marco 2006, p. 498).
If no error is returned and all other stages of lookup are successful, the inode and
dentry objects of the desired file are stored and the link path walk() method
returns a ”no error” signal 0.(Bovet & Marco 2006, p. 502).

3.2.3.2 open() function open() is used to open files, and takes the path to
the file the user/process wishes to open as an argument.(Bovet & Marco 2006,
p. 506) The open function then finds the corresponding file of this path via a
pathname lookup as described in section 3.2.3.1(Bovet & Marco 2006, p. 495)
If the open() function is successful, a new item is added to the fd array of
open files (see section 3.2.2.5), and the function returns its index, returning -1

if the function failed.

3.2.3.3 read() The read() function is used to read data from an open file
within the process. It takes as an argument how much data should be read in
bytes, starting from the processes current position in the file specified by f pos

(see section 3.2.2.4)(Bovet & Marco 2006, p. 508)

3.2.3.4 close() The close() function removes the pointer(Bovet & Marco
2006, p. 506) to a specified file from the fd array (see section 3.2.2.5).(Bovet
& Marco 2006, p. 509), and sets that entry to null. The file object itself is also
deleted(Bovet & Marco 2006, p. 509)

3.2.4 Usage of VFS by the less utility

The way that less finds, opens, reads and closes the .bashrc file in regards to
VFS can be broken down most easily into four stages

3.2.4.1 Finding the file in VFS In the first stage, the open() function is
called, which in turn calls the link path walk() function to find the dentry and

7

Figure 5: The open() function is called, and the correct dentry and inode
objects for .bashrc are found.

inode objects of .bashrc. This process is shown in figure 5, partially inspired
by a diagram in Understanding the Linux Kernel.(Bovet & Marco 2006, p. 460)

3.2.4.2 Creating the file object In the second stage, this information is
returned to the open() method, and a new file object is created and placed in
the fd struct array of file objects. Figure 6 shows a diagram of this process.

3.2.4.3 Reading from the file object In the third stage, information is
read from the file object. Figure 7 shows the process of using the read()

function(Bovet & Marco 2006, p. 508-509), as discussed in section 3.2.3.3.

3.2.4.4 Closing the file In the fourth stage, the file is closed and removed
from the fd struct array. In the case of less .bashrc the file will be closed
as the less process is closed. Figure 8 shows this process as discussed in section
3.2.3.4.

8

Figure 6: With the correct dentry and inode objects now found, a new file object
is created. A pointer to this file object is stored in the fd struct array.

Figure 7: The process of reading from an opened file using the read() function.

9

Figure 8: Closing an open file, deleting the file object, and removing its pointer
from the array in fd struct

10

3.3 Process and memory management

3.3.1 Virtual address spaces

processes have access to a virtual allocation of memory which does not reflect
how the data is actually stored in RAM or secondary storage.(Chapter 13
Arpaci-Dusseau & Arpaci-Dusseau 2023, p. 4)(Kerrisk 2010, p. 121) This block
of virtual memory is called a virtual address space.

3.3.1.1 Process isolation Presenting an abstracted memory containing
only a process’ own data to each process has the major benefit of prevent-
ing processes from accessing each other’s data.(Chapter 13 Arpaci-Dusseau &
Arpaci-Dusseau 2023, p. 5-6)(Kerrisk 2010, p. 121) This adds a level of defence
against malicious processes.

3.3.1.2 Virtual address space sections Process data in Linux is split
into 4 main sections:

• text contains instructions

• data contains statically-defined variables

• The stack contains function calls

• The heap contains dynamic memory

(Kerrisk 2010, p. 31)

3.3.1.3 Paging In order that a program doesn’t take up more memory than
it needs to at a given time, it’s virtual address space is split up into equally-sized
pages.(Kerrisk 2010, p. 119)
A page table is associated with each process which is used to translate these
virtual pages to locations in real memory.(Kerrisk 2010, p. 120) The pages
in actual memory are not necessarily unique to a single process, and may be
referenced using pages in the virtual memory of multiple processes.(Kerrisk
2010, p. 120)
page faults can occur if a process attempts to access a page which has not been
loaded into RAM. If the page exists on the disk, it can be loaded before the
program continues.(Kerrisk 2010, p. 119) Page table entries include a reference
to the page’s location, and whether or not it’s in RAM ,alongside other pieces
of information about the page.(GeeksForGeeks 2023) If the page is in RAM,
then the page table entry contains a reference to that memory location. If the
page isn’t in RAM, the page table entry contains a swap entry which points
to the page’s location in secondary storage. —In the event of a page fault
the page is found using the do swap page() function.(Linux-Kernel-Community
n.d.) Figure 9 shows the process of resolving data from a virtual page.

11

Figure 9: Diagram showing how a page address table finds the real memory
addresses of virtual memory pages. The diagram includes an example of a page
fault where the page exists in secondary storage but not in RAM.

12

Figure 10: Part of a process tree seen using the htop utility. The less .bashrc

process is shown to be a child of the bash process.

3.3.2 Running less in a child process

In order to run the less utility, the bash process must first create a copy of
itself.(Bovet & Marco 2006, p. 114) This is done with some variation of the
fork() system call which creates a new process with a copy of the original
process’ address space.(Kerrisk 2010, p. 31-32) The child process can then
execute execve() syscall to load a different program,(Kerrisk 2010, p. 31)
replacing its inherited address space(Bovet & Marco 2006, p. 114)
Evidence of this occurring can be seen in figure 10, after less .bashrc had
been entered.

3.3.2.1 Waiting for less to finish executing By waiting for the less

process to finish executing (see section 3.3.2.2), for example with a variation
of the wait() system call,(Chapter 5 Arpaci-Dusseau & Arpaci-Dusseau 2023,
p. 4)(Matthew & Richard 1997, p. 352) the terminal can return to the bash
prompt when the less process is finished.

3.3.2.2 less termination Processes can either exit intentionally using a
variation of the exit() method, or be terminated due to a signal.(Kerrisk 2010,
p. 32) If the program runs correctly and exits in a way it expects, which in the
case of less could be by using the ”q” key to quit the program, then the child
process will return 0 to any wait() syscall made by its parent process.(Kerrisk
2010, p. 32) If the process is terminated by a signal, such as the SIGINT signal
generated by a keyboard interrupt (CTRL-C)(Bovet & Marco 2006, p. 412), a
different value will be returned.(Kerrisk 2010, p. 32)
A diagram showing the ways in which the less process is created and terminated
can be seen in figure 11.

3.4 User interaction

As discussed in section 3.2.2.5, process start with stdin, stdout and stderr

file objects representing their input, as well as standard and error-related out-
put. As less is a terminal program, the input taken is keyboard input from the
user.(Kerrisk 2010, p. 30)(Vona 2019, Chapter Standard Input - STDIN)
Similarly, stdout is generally sent to the terminal to be outputted to the
user(Vona 2019, Chapter Standard Output - STDOUT)
Despite being a text-based terminal program, less is able to accept mouse com-
mands such as scrolling. I’m not completely sure as to how this is achieved using

13

Figure 11: The bash process clones itself with fork(), before the cloned pro-
cess switches to less .bashrc with an execve()-type command. The less

.bashrc process is then terminated with either a successful exit, or a SIGINT
signal, with the result being returned via a wait() syscall to the original bash
process.

14

Figure 12: References to mouse inputs under the X11 display manager standard
in the less version 590 source code

the Wayland desktop manager run by default on Debian 12, but I have found
reference to mouse input under the X11 display manager in utility’s source code.
(see figure 12 It’s possible that there is some form of emulation re-creating these
X11 style inputs.

3.5 System calls

Several functions described in the execution and termination of less .bashrc,
such as the read() function in section 3.2.3.3, are system calls. System calls
enable a process running with low privileges, such as less .bashrc in this case,
to request the use of certain restricted functions.(Chapter 6 Arpaci-Dusseau &
Arpaci-Dusseau 2023, p. 3) In the case of read(), preventing processes from
running it arbitrarily means that the permissions of the file being read can be
checked against the permissions of the process, throwing an error if the process
should not be able to read the file.(Bovet & Marco 2006, p. 509)

15

Figure 13: Usage of trap functions, allowing temporary execution of kernel
functions in kernel mode

3.5.1 usermode, kernel mode, and traps

System calls rely on two modes of operation, user mode and kernel mode.
Normal processes run in user mode, and are unable to execute functions which
could damage the operating system or other files.
Processes running in kernel mode can execute any function without restrictions.
Trap functions are used to execute system calls. A trap function enters the ker-
nel at a pre-defined point (after saving the original process’ registers to kernel
stack, in order to return to normal execution later) and executes commands
in kernel mode, before executing a ”return-from-trap” function, returning ex-
ecution in user mode to the original process.(Chapter 6 Arpaci-Dusseau &
Arpaci-Dusseau 2023, p. 4)
Figure 13 shows a diagram of how trap functions are used to enable system
calls.

16

4 Conclusion

Exeuting the command less .bashrc requires many intertwining processes to
locate data and allocate resources. Although the command is innocuous, some
functions in the process of starting the less process could prove damaging if
abused by a malicious process. To ensure that this is mitigated, a large number
of security checks are completed to limit potential damage.

17

5 List of References

References

Arpaci-Dusseau, R. H. & Arpaci-Dusseau, A. C. (2023), Operating Systems:
Three Easy Pieces, 1.10 edn, Arpaci-Dusseau Books.

Bovet, D. & Marco, C. (2006), Understanding the Linux Kernel, 3 edn, O’Reilly.

College, S. (n.d.), ‘File descriptors’.
URL: https://www.cs.swarthmore.edu/ kwebb/cs31/s15/bucs/file descriptors.html

Debian (2023a), ‘Debian displaymanagers’.
URL: https://wiki.debian.org/DisplayManager

Debian (2023b), ‘environ(7)’.
URL: https://manpages.debian.org/bookworm/manpages/environ.7.en.html

GeeksForGeeks (2022), ‘Soft and hard links in unix/linux’.
URL: https://www.geeksforgeeks.org/soft-hard-links-unixlinux/

GeeksForGeeks (2023), ‘Page table entries in page table’.
URL: https://www.geeksforgeeks.org/page-table-entries-in-page-table/

Kerrisk, M. (2010), The Linux Programming Interface, No Starch Press,
Incorporated.
URL: https://ebookcentral.proquest.com/lib/warw/detail.action?docID=1137549

Khurana, S. (2022), ‘Developer diaries: Processes, files, and file descriptors in
linux’.
URL: https://medium.com/geekculture/developer-diaries-processes-files-and-
file-descriptors-in-linux-ebf007fb78f8

Linux-Kernel-Community (n.d.), ‘Chapter 3 page table management’.
URL: https://www.kernel.org/doc/gorman/html/understand/understand006.html

Matthew, N. & Richard, S. (1997), Beginning Linux Programming, Wrox Press
Limited.

Senofsky, M., Dietl, P. & Schwalm, K. (2022), ‘Introduction to the linux virtual
filesystem (vfs): A high-level tour’.
URL: https://www.starlab.io/blog/introduction-to-the-linux-virtual-
filesystem-vfs-part-i-a-high-level-tour

Vona, S. (2019), ‘Linux fundamentals - i/o, standard streams, and redirection.’.
URL: https://www.putorius.net/linux-io-file-descriptors-and-
redirection.html#

Wiki, D. (2023).
URL: https://wiki.debian.org/EnvironmentVariables

18

	Table of Contents
	Introduction
	Description
	Software versions

	Report
	Initiation
	Context of the command

	VFS
	What VFS is
	Common file model
	Superblocks
	Inodes
	Dentry objects
	File objects
	Process data

	Finding, opening, and closing the file.
	Pathname lookup
	link_path_walk() and verifying file access rights

	open() function
	read()
	close()

	Usage of VFS by the less utility
	Finding the file in VFS
	Creating the file object
	Reading from the file object
	Closing the file

	Process and memory management
	Virtual address spaces
	Process isolation
	Virtual address space sections
	Paging

	Running less in a child process
	Waiting for less to finish executing
	less termination

	User interaction
	System calls
	usermode, kernel mode, and traps

	Conclusion
	List of References

